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Introduction
When you are dealing with large populations, for example populations created by the manufacturing
processes, it is impossible, or very difficult indeed, to deal with the whole population and know
the parameters of that population. Items such as car components, electronic components, aircraft
components or ordinary everyday items such as light bulbs, cycle tyres and cutlery effectively form
infinite populations. Hence we have to deal with samples taken from a population and estimate
those population parameters that we need. This Workbook will show you how to calculate single
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1. Sampling

Why sample?
Considering samples from a distribution enables us to obtain information about a population where
we cannot, for reasons of practicality, economy, or both, inspect the whole of the population. For
example, it is impossible to check the complete output of some manufacturing processes. Items such
as electric light bulbs, nuts, bolts, springs and light emitting diodes (LEDs) are produced in their
millions and the sheer cost of checking every item as well as the time implications of such a checking
process render it impossible. In addition, testing is sometimes destructive - one would not wish to
destroy the whole production of a given component!

Populations and samples
If we choose n items from a population, we say that the size of the sample is n. If we take many
samples, the means of these samples will themselves have a distribution which may be different from
the population from which the samples were chosen. Much of the practical application of sampling
theory is based on the relationship between the ‘parent’ population from which samples are drawn
and the summary statistics (mean and variance) of the ‘offspring’ population of sample means. Not
surprisingly, in the case of a normal ‘parent’ population, the distribution of the population and the
distribution of the sample means are closely related. What is surprising is that even in the case of a
non-normal parent population, the ‘offspring’ population of sample means is usually (but not always)
normally distributed provided that the samples taken are large enough. In practice the term ‘large’
is usually taken to mean about 30 or more. The behaviour of the distribution of sample means is
based on the following result from mathematical statistics.

The central limit theorem
In what follows, we shall assume that the members of a sample are chosen at random from a
population. This implies that the members of the sample are independent. We have already met the
Central Limit Theorem. Here we will consider it in more detail and illustrate some of the properties
resulting from it.

Much of the theory (and hence the practice) of sampling is based on the Central Limit Theorem.
While we will not be looking at the proof of the theorem (it will be illustrated where practical) it is
necessary that we understand what the theorem says and what it enables us to do. Essentially, the



In the case where the original distribution is normal, the relationship between the original distribution

X ∼ N(µ, σ) and the distribution of sample means X̄ ∼ N

(
µ,

σ√
n

)
is shown below.

X ∼ N(μ, σ)

X̄ ∼ N

(
μ,

σ√
n

)

μ

Figure 1

The distributions of X and X̄ have the same mean µ but X̄ has the smaller standard deviation
σ√
n

The theorem says that we must take large samples. If we take small samples, the theorem only
holds if the original population is normally distributed.

Standard error of the mean
You will meet this term often if you read statistical texts. It is the name given to the standard
deviation of the population of sample means. The name stems from the fact that there is some
uncertainty in the process of predicting the original population mean from the mean of a sample or
samples.

Key Point 1

For a sample of n independent observations from a population with variance σ2, the standard error

of the mean is σn =
σ√
n

.

Remember that this quantity is simply the standard deviation of the distribution of sample means.

4 HELM (2008):
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Finite populations
When we sample without replacement from a population which is not infinitely large, the observations



Using the results given above the value of σn,N should be given by the formula

σn,N =
σ√
n

√
N − n

N − 1

with σ = 1.4142, N = 5 and n = 2. Using these numbers gives:

σ2,5 =
σ√
n

√
N − n

N − 1
=

1.4142√
2

√
5 − 2

5 − 1
=

√
3

4
= 0.8660 as predicted.

Note that in this case the ‘correction factor’

√
N − n

N − 1
≈ 0.8660 and is significant. If we take samples

of size 10 from a population of 100, the factor becomes√
N − n

N − 1
≈ 0.9535

and for samples of size 10 taken from a population of 1000, the factor becomes√
N − n



®

Answer
Since the population is very large indeed, we are effectively sampling from an infinite population.
The mean and standard deviation are given by

µ = 2 cm and σ200 =

√
0.05√
200

= 0.016 cm

Since the parent population is normally distributed the means of samples of 200 will be normally
distributed as well.

Hence P(sample mean length > 2.02) = P(z >
2.02 − 2

0.016
) = P(z > 1.25) = 0.5 − 0.3944 = 0.1056

2. Statistical estimation
When we are dealing with large populations (the production of items such as LEDs, light bulbs,
piston rings etc.) it is extremely unlikely that we will be able to calculate population parameters such
as the mean and variance directly from the full population.

We have to use processes which enable us to estimate these quantities. There are two basic methods
used called point estimation and interval estimation. The essential difference is that point estimation
gives single numbers which, in the sense defined below, are best estimates of population parameters,
while interval estimates give a range of values together with a figure called the confidence that the
true value of a parameter lies within the calculated range. Such ranges are usually called confidence
intervals.

Statistically, the word ‘estimate’ implies a defined procedure for finding population parameters. In
statistics, the word ‘estimate’ does not mean a guess, something which is rough-and-ready. What
the word does mean is that an agreed precise process has been (or will be) used to find required
values and that these values are ‘best values’ in some sense. Often this means that the procedure
used, which is called the ‘estimator’, is:

(a) consistent in the sense that the difference between the true value and the estimate
approaches zero as the sample size used to do the calculation increases;

(b) unbiased in the sense that the expected value of the estimator is equal to the true value;

(c) efficient in the sense that the variance of the estimator is small.

Expectation is covered in Workbooks 37 and 38. You should note that it is not always possible to
find a ‘best’ estimator. You might have to decide (for example) between one which is

consistent, biased and efficient

and one which is

consistent, unbiased and inefficient

when what you really want is one which is

consistent, unbiased and efficient.

HELM (2008):
Section 40.1: Sampling Distributions
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Point estimation
We will look at the point estimation of the mean and variance of a population and use the following
notation.

Notation

Population Sample Estimator
Size N n

Mean µ or E(x) x̄ µ̂ for µ
Variance σ2 or V(x) s2 σ̂2 for σ2

Estimating the mean

This is straightforward.

µ̂ = x̄

is a sensible estimate since the difference between the population mean and the sample mean dis-
appears with increasing sample size. We can show that this estimator is unbiased. Symbolically we
have:

µ̂ =
x1 + x2 + · · · xn

n

so that

E(µ̂) = =
E(x1) + E(x2) + · · · + E(xn)

n

=
E(X) + E(X) + · · · + E(X)

n
= E(X)

= µ

Note that the expected value of x1 is E(X), i.e. E(x1) = E(X). Similarly for x1, x2, · · · , xn.

Estimating the variance

This is a little more difficult. The true variance of the population is σ2 =

∑
(x − µ)2

N
which suggests

the estimator, calculated from a sample, should be σ̂2 =

∑
(x − µ)2

n
.

However, we do not know the true value of µ, but we do have the estimator µ̂ = x̄.

Replacing µ by the estimator µ̂ = x̄ gives

σ̂2 =

∑
(x − x̄)2

n

This can be written in the form

σ̂2 =

∑
(x − x̄)2

n
=

∑
x2

n
− (x̄)2

Hence

E(σ̂2) =
E(

∑
x2)

n
− E{(X̄)2} = E(X2) − E{(X̄)2}

8 HELM (2008):
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We already have the important result

E(x) = E(x̄) and V(x̄) =
V(x)

n

Using the result E(x) = E(x̄) gives us

E(σ̂2) = E(x2) − E{(x̄)2}
= E(x2) − {E(x)}2 − E{(x̄)2} + {E(x̄)}2

= E(x2) − {E(x)}2 − (E{(x̄)2} − {E(x̄)}2)

= V(x) − V(x̄)

= σ2 − σ2

n

=
n − 1

n
σ2

This result is biased, for an unbiased estimator the result should be σ2 not
n − 1

n
σ2.



Thirdly, looking at the following extract from the normal probability tables,

Z =
X − µ

σ
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

1.9 .4713 4719 4726 4732 4738 4744 4750 4756 4762 4767

we can see that 2×47.
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Example 1
After 1000 hours of use the weight loss, in gm, due to wear in certain rollers in
machines, is normally distributed with mean µ and variance σ2. Fifty independent
observations are taken. (This may be regarded as a “large” sample.) If observation

i is yi, then
50∑
i=1

yi = 497.2 and
50∑
i=1

y2
i = 5473.58.

Estimate µ and σ2 and give a 95% confidence interval for µ.



Answers

1.
∑

yi = 611.0,
∑

y2
i = 6227.34 and n = 60. We estimate µ using the sample mean:

ȳ =

∑
yi

n
=

611.0

60
= 10.1833 V

We estimate σ2 using the sample variance:

s2 =
1

n − 1

∑
(yi − ȳ)2 =

1

n − 1

{∑
y2

i − 1

n

[∑
yi

]2
}

=
1

59

{
6227.34 − 1

59
611.02

}
= 0.090226

The estimated standard error of the mean is√
s2

n
=

√
0.090226

60
= 0.03878 V

The 99% confidence interval for µ is ȳ ± 2.58
√

s2/n. That is

10.08 < µ < 10.28

2. We estimate µ using the sample mean:

ȳ =

∑
yi

n
=

147.75

75
= 1.97

We estimate σ2 using the sample variance:

s2 =
1

n − 1

∑
(yi − ȳ)2 =

1

n − 1

{∑
y2

i − 1

n

[∑
yi

]2
}

=
1

74

{
292.8175 − 1

75
147.752

}
= 0.02365

The estimated standard error of the mean is√
s2

n
=

√
0.02365

75
= 0.01776

The 95% confidence interval for µ is ȳ ± 1.96
√

s2/n. That is

1.935 < µ < 2.005

The 95% confidence interval for the median time, in minutes, to complete the task is

e1.935 < M < e2.005

That is

6.93 < M < 7.42

12 HELM (2008):
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Interval Estimation
for the Variance

�
�

�
�40.2

Introduction
In Section 40.1 we have seen that the sampling distribution of the sample mean, when the data
come from a normal distribution (and even, in large samples, when they do not) is itself a normal
distribution. This allowed us to find a confidence interval for the population mean. It is also often
useful to find a confidence interval for the population variance. This is important, for example, in
quality control. However the distribution of the sample variance is not normal. To find a confidence
interval for the population variance we need to use another distribution called the “chi-squared”
distribution.

'

&

$

%

Prerequisites
Before starting this Section you should . . .

• understand and be able to calculate means
and variances

• understand the concepts of continuous
probability distributions

• understand and be able to calculate a
confidence interval for the mean of a normal
distribution#

"

 

!
Learning Outcomes

On completion you should be able to . . .

• find probabilities using a chi-squared
distribution

• find a confidence interval for the variance of
a normal distribution

HELM (2008):
Section 40.2: Interval Estimation for the Variance
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1. Interval estimation for the variance
In Section 40.1 we saw how to find a confidence interval for the mean of a normal population. We
can also find a confidence interval for the variance. The corresponding confidence interval for the
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The probability density function is

f(x) =
1

2k/2Γ(k/2)
x(k/2)−1e−x/2 x > 0.

The plots in Figure 2 show the probability density function for various convenient values of k. We
have deliberately taken even values of k so that the gamma function has a value easily calculated
from the above formula for a factorial. In these graphs the vertical scaling has been chosen to ensure
each graph has the same maximum value.

It is possible to discern two things from the diagrams.

Firstly, as k increases, the peak of each curve occurs at values closer to k. Secondly, as k increases,
the shape of the curve appears to become more and more symmetrical. In fact the mean of the χ2

distribution is k and in the limit as k → ∞ the χ2 distribution becomes normal. One further fact,
not obvious from the diagrams, is that the variance of the χ2 distribution is 2k.

Figure 2

A summary is given in the following Key Point.

Key Point 3

The χ2 distribution, defined by the probability density function

f(x) =
1

2k/2Γ(k/2)
x(k/2)−1e−x/2 x > 0.

has mean k and variance 2k and as k →∞ the limiting form of the distribution is normal.

HELM (2008):
Section 40.2: Interval Estimation for the Variance
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Degrees of freedom
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Figure 3

The χ2
α,ν values for (say) right-hand area values of 5% are given by the column headed 0.05 while

the χ2
α,ν values for (say) left-hand area values of 5% are given by the column headed 0.95. Figure 4

shows the values of χ2
α,ν for the two 5% tails when there are 5 degrees of freedom.

Figure 4

Use the percentage points of the χ2 distribution to find the appropriate values of
χ2

α,ν in the following cases.

(a) Right-hand tail of 10% and 7 degrees of freedom.

(b) Left-hand tail of 2.5% and 9 degrees of freedom.

(c) Both tails of 5% and 10 degrees of freedom.

(d) Both tails of 2.5% and 20 degrees of freedom.

Your solution

Answer
Using Table 1 and reading off the values directly gives:
(a) 12.02 (b) 2.70 (c) 3.94 and 18.31 (d) 9.59 and 34.17

HELM (2008):
Section 40.2: Interval Estimation for the Variance
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Constructing a confidence interval for the variance
We know that if x1, x2, x3, · · · , xn is a random sample taken from a normal population with mean
µ and variance σ2 and if the sample variance is denoted by S2, the random variable

X2 =
(n
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Key Point 5

If x1, x2, x3, · · · , xn is a random sample with variance S2



In a typical car, bell housings are bolted to crankcase castings by means of a series
of 13 mm bolts. A random sample of 12 bolt-hole diameters is checked as part of
a quality control process and found to have a variance of 0.0013 mm2.

(a) Construct the 95% confidence interval for the variance of the holes.

(b)
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Exercises

1. Measurements are made on the lengths, in mm, of a sample of twenty wooden components for
self-assembly furniture. Assume that these may be regarded as twenty independent observations
from a normal distribution with unknown mean µ and unknown variance σ2. The data are as
follows.

581 580 581 577 580 581 577 579 579 578
581 583 577 578 582 581 582 580 582 579

Find a 95% confidence interval for the variance σ2 and hence find a 95% confidence interval
for the standard deviation σ.

2. A machine fills packets with powder. At intervals a sample of ten packets is taken and the
packets are weighed. The ten weights may be regarded as a sample of ten independent ob-
servations from a normal distribution with unknown mean. Find limits L, U such that the
probability that L < S2 < U is 0.9 when the population variance is σ2 = 3.0 and S2 is the
sample variance.

Answers

1. From the data we calculate
∑

yi = 11598 and
∑

y2
i = 6725744 and we have n = 20. Hence

(n− 1)s2 =
∑

(yi − ȳ)2 = 6725744− 115982

20
= 63.8

The number of degrees of freedom is n− 1 = 19. We know that

χ2
0.975,19 <

(n− 1)S2

σ2
< χ2

0.025,19

with probability 0.95. So a 95% confidence interval for σ2 is

(n− 1)s2

χ2
0.025,19

< σ2 <
(n− 1)s2

χ2
0.975,19

That is
63.8

32.85
< σ2 <

63.8

8.91
so 1.942 < σ2 < 7.160

This gives a 95% confidence interval for σ: 1.394 < σ < 2.676

2. There are n− 1 = 9 degrees of freedom. Now

0.9 = P

(
χ2

0.05,9 <
(n− 1)S2

σ2
< χ2

0.95,9

)
= P

(
χ2

0.05,9σ2

n− 1
< S2 <

χ2
0.95,9σ2

n− 1

)
= P

(
3.33× 3.0

9
< S2 <

16.92× 3.0

9

)
= P(1.11 < S2 < 5.64)

Hence L = 1.11 and U = 5.64.

HELM (2008):
Section 40.2: Interval Estimation for the Variance
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